Doc Ref: <Document Reference Number>
TE.020 Unit Test Script
XXX 0, 0000

AIM

TE.020 Unit Test Script

<Company Long Name>
<Subject>
Author:
<Author>
Creation Date:
May 16, 1999
Last Updated:
XXX 0, 0000
Document Ref:
<Document Reference Number>

Version:
DRAFT 1A

Note: Title, Subject, Last Updated Date, Reference Number, and Version are marked by a Word Bookmark so that they can be easily reproduced in the header and footer of documents. When you change any of these values, be careful not to accidentally delete the bookmark. You can make bookmarks visible by selecting Tools->Options…View and checking the Bookmarks option in the Show region.
Approvals:
<Approver 1>

<Approver 2>

Note: To add additional approval lines, press [Tab] from the last cell in the table above.

Copy Number

Note: You can delete any elements of this cover page that you do not need for your document. For example, Copy Number is only required if this is a controlled document and you need to track each copy that you distribute.

Document Control

Change Record

1
Date
Author
Version
Change Reference

16-May-99
<Author>
Draft 1a
No Previous Document

Reviewers

Name
Position

Distribution

Copy No.
Name
Location

1
Library Master
Project Library

2

Project Manager

3

4

Note: The copy numbers referenced above should be written into the Copy Number space on the cover of each distributed copy. If the document is not controlled, you can delete this table, the Note To Holders, and the Copy Number label from the cover page.

Note To Holders:

If you receive an electronic copy of this document and print it out, please write your name on the equivalent of the cover page, for document control purposes.

If you receive a hard copy of this document, please write your name on the front cover, for document control purposes.

Contents

iiiDocument Control

Overview
1
Century Date Compliance
1
Unit Test Checklist
2
Form Information
2
Functional Tests
2
Test 1.
Inserting A Record
2
Test 2.
Querying A Record Using Query Mode
3
Test 3.
Updating A Record
3
Test 4.
Deleting A Record
4
Test 5.
LOVs (List Of Values)
4
Test 6.
Derived And Dependent Fields
5
Test 7.
Key Flexfields
5
Test 8.
Descriptive Flexfields
6
Test 9.
Dependent Field Validation
6
Test 10.
Numeric Field Validation
6
Test 11.
Other Field Validation
6
Test 12.
Block Navigation
7
Test 13.
Record Navigation
7
Test 14.
Item Navigation
8
Test 15.
Alternative Regions
8
Test 16.
Master-Detail Coordination
8
Test 17.
Menu Functions
9
Test 18.
Modal Windows
10
Test 19.
Non-Modal Windows
11
Test 20.
Concurrent Requests
11
Test 21.
Response Time
11
Test 22.
General User Interface
11
Test 23.
Miscellaneous Coding Standards
12
Test 24.
Record Locking
12
Cosmetic Standards Tests
12
Test 25.
Property Classes
12
Test 26.
Windows And Window Titles
13
Test 27.
Blocks And Regions
13
Test 28.
Layout
14
Test 29.
Text
14
Test 30.
Other Interface Items
17
Test 31.
Range Fields
18
Test 32.
Multiple Selection
19
Unit Test Specification - <Scenario Number>
20
Data Profile - <Scenario Number>
21
Defect Log
22
Open And Closed Issues For This Deliverable
23
Open Issues
23
Closed Issues
23

Note: To update the table of contents, put the cursor anywhere in the table and press [F9]. To change the number of levels displayed, select the menu option Insert‑>Index and Tables, make sure the Table of Contents tab is active, and change the Number of Levels to a new value.

Overview

This Unit Test Script verifies that each application extension conforms to development standards by using this standards checklist. This test script has been updated to incorporate the standards at this implementation site. The tests outlined here were performed as the first step during unit testing of each application extension.

This checklist covers only common and easily tested problems, and makes no pretense of being a comprehensive check for compliance to standards. If it were, this checklist would be as big as the UI standards document and would take far too long to go through. All developers and testers have already read the entire user interface standards document (and any relevant areas of the coding standards document). They have checked things they see against those standards even when they do not appear on the checklist.

Further, after doing your own checking, the Tester will review every window for standards problems missed by the initial tester. The Tester also identified general user interface improvements possible beyond simple standards issues. The Tester reviewed for possible overall improvements (better ways to present the information or lay out the window, better methods of how to do the necessary actions, and so on). This was done allowing enough time to make any necessary changes, not just before release. Testers were available for preliminary checks and user interface ideas at any point during the design. Preliminary reviews were starting with the un-coded window layout, or even a sketch, before beginning programming code.

Regression testing was performed to check that bug fixes did not break previously tested code. The testing execution plan is an iteration of the following

Test -> Find Error -> Fix Bug (Retest

Century Date Compliance

In the past, two character date coding was an acceptable convention due to perceived costs associated with the additional disk and memory storage requirements of full four character date encoding. As the year 2000 approached, it became evident that a full four character coding scheme was more appropriate.

 In the context of the Application Implementation Method (AIM), the convention Century Date or C/Date support rather than Year2000 or Y2K support is used. It is felt that coding for any future Century Date is now the modern business and technical convention.

 Every applications implementation team needs to consider the impact of the Century Date on their implementation project. As part of the implementation effort, all customizations, legacy data conversions, and custom interfaces need to be reviewed for Century Date compliance.

Testing activities need to make sure that all interfaces and application extensions are coded for Century Date compliance. Unit test scripts should include steps for testing Century Date compliance.

Unit Test Checklist

Form Information

Application:

<Form|Report|Interface> Short Name:

<Form|Report|Interface> Title:

Tester:

Date Tested:

Related Concurrent Program:

Functional Tests

Note: Repeat the section below in context for each report, interface, or other application extensions. Remove any questions that are inappropriate for the context of the application extension. Add new questions as appropriate.

Test 1.
Inserting A Record

If you are testing a block not intended to allow inserts, attempt to insert a record, verify insert did not take place and then go on to the next test.

Functional:
1.1

Insert not allowed. Try various ways to start an insert including Edit New Record and Edit Clear Block; also test Edit Delete Record, Edit Clear Record, Go Next Record, and [Down] from the last record.

Otherwise verify:

Functional:
1.2

You can enter values only in fields that should be accessible.

Functional:
1.3

You cannot Save after leaving one or more functionally required fields blank. (Try one field at a time to make sure that the form forces you to enter each required field.)

Functional:
1.4

You can successfully Save after entering values into each functionally required field and leaving all optional fields blank.

Functional:
1.5

You can Save after entering a value into every field (excluding mutually exclusive fields).

Functional:
1.6

You can re-query any record you inserted, including flexfield segments.

Functional:
1.7

Edit New Record works correctly.

Functional:
1.8

You can fill each field to the maximum field length and save the record. No field is longer than its corresponding database column.

Functional:
1.9

Fields, including GUI widgets, default sensibly.

Functional:
1.10

The form checks for duplicate primary keys or unique index values before inserting records into the database. Verify that you can change a duplicate key and save successfully.

Functional:
1.11

You can navigate around the record, leaving a required field null, but you cannot leave the record without providing the required field value.

SQL*Plus:
1.12

Each newly inserted record has a unique ID.

SQL*Plus:
1.13

All column values are correct - this is important to check now since ON-triggers perform most of the DML, instead native forms processing.

SQL*Plus:
1.14

“Who” columns are correct.

SQL*Plus:
1.15

Each foreign key points to an existing record.

SQL*Plus:
1.16

Each derived column contains the correct value.

Test 2.
Querying A Record Using Query Mode

If you are testing a block not intended to allow queries, try to query a record and verify that query does not take place, and then go on to the next test.

Functional:
2.1

Query not allowed.

Otherwise verify:

Functional:
2.3

Query Enter, Query Run, Query Cancel, Query Show Last Criteria, Query Count Matching Records, and Query Get More Records work correctly.

Functional:
2.4

Each field that you can query, including key flexfields and flexfield segments, allows query by example.

Functional:
2.5

The form retrieves the correct records based upon the criteria you specify. Try every field singly, then try a few combinations.

Functional:
2.6

When you query a record, the form retrieves a value for each field (including derived fields and LOV fields) if the relevant database column is populated.

Designer:
2.7

The query length of each field that can be queried is 255.

Designer:
2.8

The query length of each field that cannot be queried is 0.

Functional:
2.9

Verify that allowed queries are case insensitive for mixed cased text items.

Functional:
2.10

When you query each block, it displays records in a logical order.

Functional:
2.11

All dependent fields show the correct value after query.

Functional:
2.12

You can move the cursor into any field that requires horizontal scrolling, including non-alterable fields.

Functional:
2.13

If you query a record, navigate through each field without making any changes and then save the record. Confirm that the "No changes to commit" message displays.

Functional:
2.14

Confirm that when you do not touch a checkbox, it does not impact the query. (The checkbox has an underlying, but not visible, don't-care status.)

Functional:
2.15

You cannot enter values in any fields that do not allow query.

Test 3.
Updating A Record

If you are testing a block not intended to allow updates, try to update a record and verify that update does not take place, and then go to the next test.

Functional:
3.1

Update not allowed. Try various ways to start an update including Edit List of Values, Edit Edit Field, Edit Clear Field, and typing in the fields.

Otherwise verify:

Functional:
3.2

You can update all fields that should allow update, and no fields that should not allow update.

Functional:
3.3

You can Save after update of one or more fields by using Action Save or the diskette icon.

Functional:
3.4

You can erase the values for each optional field in a record then Save the changes. Query that record to verify your changes saved and the defaults do not reappear.

Functional:
3.5

When the application design allows users to update the primary key or unique index values of a record, the form checks for duplicate values. Verify that you can change a duplicate and save successfully.

Functional:
3.6

If the form does not auto-commit, after you update a field you must explicitly either save or abandon your changes before leaving the form.

SQL*Plus:
3.7

All column values are correct after the update.

SQL*Plus:
3.8

Who columns update correctly.

SQL*Plus:
3.9

Each foreign key points to an existing record.

SQL*Plus:
3.10

Each derived column contains the correct value after the update.

Test 4.
Deleting A Record

If you are testing a block to not allow deletions, try to delete a record and verify that the delete does not take place, then go on to the next test.

Functional:
4.1

Delete not allowed. Communicate this as soon as reasonably possible, usually by disabling the menu item.

Otherwise verify:

Functional:
4.2

When the form design prohibits record deletes, Edit Delete Record displays an explanatory message as soon as reasonably possible. An alternative is to disable Edit Delete Record if the reason it is unavailable will be clear to the user.

Data Model:
4.3

You can delete a record only where you do not violate referential integrity constraints.

Functional:
4.4

If a block allows deletion, a confirmation message always appears when you try to delete a record. If you choose not to delete the record, the delete does not occur.

Functional:
4.5

When you delete a record, it disappears from the screen.

Functional:
4.6

When you delete a record, and cascading deletes are appropriate, any child records disappear from the screen.

Functional:
4.7

If use of another term, meaning to delete, then verify that Edit Delete Record also works, even if the result is a batch delete.

SQL*Plus:
4.8

When you use SQL*Plus to delete a record from the form and save, the record disappears from the database.

Data Model:
4.9

After a cascading delete, verify that no orphaned records remain with foreign keys pointing to the deleted record. (Check using SQL*Plus).

Test 5.
LOVs (List Of Values)

Functional:
5.1

Each LOV field evokes the appropriate lamp. (There may be times when the lamp displays lit even though the field does not allow update.)

Functional:
5.2

You can invoke an LOV from every LOV field using Edit List of Values.

Functional:
5.3

LOV validates each LOV field. When you type an illegal field value, an LOV window opens. This does not apply to the calendar though. Although LOV opens the calendar on date fields, the calendar should not open automatically on entry of an invalid date.

Functional:
5.4

When you type an incomplete value, LOV completes it or opens a window.

Functional:
5.5

LOV lists should show only valid values. But if it is possible to choose an invalid value from an LOV (due to some unavoidable validation issue or possible user confusion about why the value is not there), a message should display explaining why it is invalid.

Functional:
5.6

LOV offers the correct choices in a logical order.

Functional:
5.7

You can choose only enabled values.

Functional:
5.8

LOV uses the Long List feature for lists expected to be longer than one hundred items.

Functional:
5.9

LOV is not generally available in Query Enter mode. If it is, verify that the correct values are available.

Functional:
5.10

The LOV window opens centered at (5,4).

Functional:
5.11

Edit List of Values correctly disabled for all fields that do not have LOV and are not dates.

Functional:
5.12

List of Values shows fields at a reasonable size to not truncate values, generally the same size as they display on the form.

Test 6.
Derived And Dependent Fields

Functional:
6.1

Each derived field shows the correct value.

Functional:
6.2

Each derived field shows the correct value after unusual or unexpected navigation.

Functional:
6.3

Each running total field shows the correct value.

Functional:
6.4

Each running total field shows the correct values after you use unusual navigation or modify the addend field several times.

Functional:
6.5

Each calculated field shows the correct value.

Functional:
6.6

Each calculated field shows the correct value after unusual or unexpected navigation.

Functional:
6.7

When you use Edit Clear Field on a field that another field depends upon, the corresponding dependent field updates after you leave the item.

Functional:
6.8

When you space over a field to erase it, all dependent fields update also.

Test 7.
Key Flexfields

Functional:
7.1

You can invoke the key flexfield window by using Edit Edit Field.

Functional:
7.2

Key flexfields allow the direct entry method.

Functional:
7.3

You cannot leave a key flexfield segment NULL if it is mandatory.

Functional:
7.4

The flexfield allows entry and query correctly when defined with dependent segments.

Functional:
7.5

You can define a single-segment key flexfield.

Functional:
7.6

You can define a multi-segment key flexfield.

Functional:
7.7

You can define several cross validation rules.

Functional:
7.8

Cross validation rules work correctly.

Functional:
7.9

If the form allows dynamic inserts, you can create a new flexfield combination that satisfies the cross-validation rules.

Functional:
7.10

You can enter only valid values you have defined for a segment.

Functional:
7.11

You can invoke LOV where you have defined a list of valid values for a segment. (For account flexfields, LOV will simply open the edit window.)

Functional:
7.12

Each key flexfield has a <List> lamp.

Test 8.
Descriptive Flexfields

Functional:
8.1

At form startup, the descriptive flexfield displays disabled if the user has not defined and enabled it.

Functional:
8.2

You can define a descriptive flexfield.

Functional:
8.3

You can enter only the valid values you defined for each segment.

Functional:
8.4

The descriptive flexfield shows the concatenated values.

Functional:
8.5

Descriptive flexfield uses a user-level profile to determine whether the flexfield window pops open when you navigate into the field.

Functional:
8.6

You cannot leave a descriptive flexfield segment NULL if it is mandatory.

Designer:
8.7

Descriptive flexfields are text items displaying 2 characters.

Functional:
8.8

The descriptive flexfield is the last field of the block unless there is a compelling reason to place it elsewhere. It is on the main canvas, not in an alternative region.

Cosmetic:
8.9

The prompt associated with descriptive Flexfields is [].

Designer:
8.10

The prompt characters display immediately above the column in a multi-record block.

Designer:
8.11

The prompt characters are in alignment and snapped to center horizontally.

Test 9.
Dependent Field Validation

Functional:
9.1

You cannot input an invalid record. (Try to save an invalid record and verify that the form presents a meaningful error message.)

Functional:
9.2

You can exit the form with an invalid value on the screen. Make sure that the form does not allow you to save, but allows you to quit and abandon your changes.

Functional:
9.3

When a field has no allowable values because of the values in another field, you can navigate out of the field and into the other to enlarge the set. (Enter an invalid combination of values, correct the values, and save.)

Test 10.
Numeric Field Validation

Functional:
10.1

You cannot enter alphabetic characters such as “A”.

Functional:
10.2

You can enter a numeric value that falls between a field's lower and upper limits.

Functional:
10.3

You cannot enter a numeric value less than a field's lower limit or greater than its upper limit.

Functional:
10.4

You cannot enter a numeric value at a field's lower or upper limit when the range does not include the end points.

Functional:
10.5

You can type numbers of the appropriate precision into a numeric field.

Functional:
10.6

You cannot enter a number that exceeds the precision of the underlying database column.

Functional:
10.7

Running total fields are in alignment with their counterparts, and are large enough to accommodate the total.

Functional:
10.8

The only right justified fields are those containing monetary amounts and percentages, and only if they have a fixed decimal place rather than a floating decimal.

Test 11.
Other Field Validation

Date Fields

Cosmetic:
11.1

You can type only dates into a date field.

Designer:
11.2

Date fields do not have a format mask.

Cosmetic:
11.3

The Calendar is available on all date fields.

Cosmetic:
11.4

Verify that the Calendar invokes both by Edit List of Values and Edit Edit Field and the <List> lamp displays.

Cosmetic:
11.5

The Calendar displays only the Date fields if the user cannot specify a time with the date.

Cosmetic:
11.6

The Calendar displays the Time fields if the user can specify a time with the date.

Percentage Fields

Functional:
11.7

You cannot enter percentages over 100 or less than 0 when the application design forbids such percentages.

Currency Fields

Cosmetic:
11.8

You can enter currency values with an adequate number of digits before and after the decimal point.

Cosmetic:
11.9

Changing the currency code changes the formatting of the currency amount to be appropriate to the new currency.

Test 12.
Block Navigation

Functional:
12.1

You cannot circumvent block validation by using the mouse to move the cursor.

Functional:
12.2

When only 1 detail block exists for the current block, Go Next Block moves the input focus to that detail, possibly opening another window.

Functional:
12.3

When more than 1 detail block exists, then only 1 block becomes the “next” block.

Functional:
12.4

You can navigate from the first block through to the last block by using Go Next Block.

Functional:
12.5

Verify disabled Go Next Block from the last block.

Functional:
12.6

Go Previous Block moves the cursor to the first field of the previous block.

Functional:
12.7

You can navigate from the last block through to the first block by using Go Previous Block.

Functional:
12.8

Verify disabled Go Previous Block from the first block.

Non-NCD:
12.9

For multi-record blocks, the current record indicator always correctly displays on the current record after you navigate between blocks.

Functional:
12.10

In a Find window, Go Next Block performs the same function as the "Find" button and Go Previous Block takes you to the results window without doing a Find.

In a Find block (not a separate window, but a block above the results block in the same window), Go Next Block performs the same function as the "Find" button and Go Previous Block is disabled.

Functional:
12.11

In combination blocks, the drilldown indicator, New and Open take you to the single row view. Otherwise, you stay on the view you are currently looking at during any action you are taking.

Test 13.
Record Navigation

Functional:
13.1

You cannot circumvent the record validation by using the mouse to move the cursor around items between records.

Functional:
13.2

For each block, Go Next Record moves the cursor to the first field of the next record.

Functional:
13.3

For each block, Go Previous Record moves to the first field of the previous record.

Functional:
13.4

For each block, Verify disabled Go Previous Record from the first record.

Non-NCD:
13.5

For each multi-record block, the current record indicator always correctly positions on the current record after you navigate between records.

Functional:
13.6

In a multi-record block, Go Next Field from the last field of the record moves to the next record.

Test 14.
Item Navigation

Functional:
14.1

You cannot break any dependent field validation by using the mouse to move the cursor around the items.

Functional:
14.2

Tabbing never leaves the window.

Functional:
14.3

Go Next Field moves the cursor left-to-right, top-to-bottom within a region, then left-to-right, top-to-bottom to the next field or region.

Functional:
14.4

Go Previous Field does the opposite (right-to-left, bottom-to-top within a region, then right-to-left, bottom-to-top to the previous field or region).

Functional:
14.5

In a single record block, Go Next Field from the last field of a block moves the cursor to the first field of the next block - if the next block is in the same window.

Functional:
14.6

In a single record block, Go Previous Field from the first field of a block moves the cursor to the last field of the previous block - if the previous block is in the same window.

Functional:
14.7

In a single record block, Go Next Field from the last field of the last block moves the cursor to the first field of the last block.

Functional:
14.8

In a single record block, Go Previous Field from the first field of the first block wraps the cursor to the last field of the first block.

Functional:
14.9

Display fields accept input focus, but prevent typing.

Functional:
14.10

Allows clicking into display fields (to get context sensitive help and perform the “Copy” action). But, does not tab to any display fields unless (1) it is the last field of the row and may require scrolling or (2) the form is an inquiry form so all fields are display only.

Functional:
14.11

You can back tab into any fields that may require scrolling

Functional:
14.12

Does not tab to any disabled fields.

Test 15.
Alternative Regions

Functional:
15.1

The value displayed in the poplist always corresponds to the current alternative region shown.

Functional:
15.2

When the cursor is in the same block as the alternative region, selecting a region from the poplist moves the cursor to the first item of that region.

Functional:
15.3

When the cursor is in a different block from the alternative region, selecting a region from the poplist merely displays that region; there is no change in cursor context.

Functional:
15.4

The poplist operates in Query Enter mode.

Functional:
15.5

Key Block Menu (F5 on Windows) opens a List of Values of the alternative regions from the keyboard when on the alternative region.

Functional:
15.6

The alternative region names are clear and make the location of fields predictable. When multiple items comprise an alternative region's name, verify separation of those items by a comma and a space (x, y, z).

Cosmetic:
15.7

Alternative regions in a multi-record block are separated from its adjacent fields by at least 0.1".

Test 16.
Master-Detail Coordination

Functional:
16.1

You cannot break the coordination logic using Go Next Block, Go Previous Block, Go Next Record, and Go Previous Record.

Functional:
16.2

You can navigate to any detail block, even if the master block does not display a record. If the master block does not display a record, you cannot type or query in the detail block.

Functional:
16.3

If the master block displays a record, you can navigate to the detail block. You can query in the detail block only if you saved the master first.

Functional:
16.4

The master block does not auto-query unless only one record can return. Forms where users cannot insert records and those where only a few records will return by the query may be exceptions to this rule.

Functional:
16.5

If applicable, each detail block in a separate non-modal window from its master block has a coordination check box to allow the user to toggle between immediate and deferred coordination.

Functional:
16.6

Each detail block coordinates with its master, when displayed and coordination set to immediate.

Functional:
16.7

Each detail block in the same window as the master block must always coordinate with its master, unless immediate coordination is too costly. In that case the detail block must have a coordination check box to allow the user to toggle between immediate and deferred coordination.

Functional:
16.8

When there is a check in the coordination box, the coordination is immediate.

Functional:
16.9

When block coordination set to deferred, the detail block coordinates with the master when you navigate to it.

Functional:
16.10

When you open the detail window, the relation coordination is set to the current value for the coordination check box.

Designer:
16.11

When you close the detail window, the coordination check box value does not change, but the relation coordination is set to deferred.

Functional:
16.12

Go Next Record and Go Previous Record in the master block automatically clear all detail blocks and auto-query if coordination is set to immediate.

Functional:
16.13

The message "Do you want to save?" appears when a master block clears a modified detail record. (Try updating a detail without saving, then changing to a different master record.)

Functional:
16.14

You cannot Tab to the coordination checkbox, and clicking on the coordination checkbox does not move the cursor there. In other words, navigable and mouse-navigate are false.

Test 17.
Menu Functions

Save Functions

Functional:
17.1

Action Save (and Action Save and Proceed) save any changes. Re-query to verify your changes were saved.

Exit Functions

Functional:
17.2

Action Close Form and Action Exit Oracle Applications both ask you to save any changes you made to the form if changes are pending.

Functional:
17.3

Action Close Form closes just the current form.

Functional:
17.4

Action Exit Oracle Applications attempts to quit the application (not just the form), and is disabled if in Query Enter mode.

Clear Functions

Functional:
17.5

Edit Clear Form returns the form to its original state - where every field is either blank or filled with the correct default value. Verify that any secondary windows also cleared.

Functional:
17.6

Edit Clear Form does not clear dynamic prompts, dynamic titles, or poplists used to control alternative regions. It does however, switch back to showing the first alternative region.

Functional:
17.7

After you use Edit Clear Form, the form works correctly. It allows you to insert, query, or modify records, and save changes where appropriate.

Functional:
17.8

When you have not changed any field values, Edit Clear Form does not ask you to save your changes before clearing the form.

Functional:
17.9

When you have modified one or more fields of the form, Edit Clear Form asks you to save your changes before clearing the form.

Functional:
17.10

Edit Clear Block returns every block to its original state, where every field contains either blanks or a default value.

Functional:
17.11

Edit Clear Block clears detail blocks and changes child window title context.

Functional:
17.12

When you have made any changes to the parent block, or any child blocks, Edit Clear Block asks you to save or abandon your changes before clearing the block(s).

Functional:
17.13

When you have not made any changes to the relevant block(s), Edit Clear Block does not ask you to save or abandon your changes before clearing the block(s).

Functional:
17.14

For each single record block, Edit Clear Record returns the record to its original state, where each field contains either blanks or the correct default value.

Functional:
17.15

For each multi-record block, Edit Clear Record displays the next record.

Functional:
17.16

Edit Clear Field clears any field available for entry or update.

Duplicate Record Functions

Functional:
17.17

When enabled, saving a record that was initially created using Edit Duplicate Record Above does not raise any Oracle errors or duplicate key errors.

Edit Functions

Functional:
17.18

You can invoke the editor on any text item.

Help Functions

Functional:
17.19

Help Window Help displays help for the current form.

Functional:
17.20

Help About Oracle Applications shows correct form information, including version number.

Functional:
17.21

Help About This Record works from each queryable block. (Who function works only for blocks containing records from the database.)

Special Functions

Functional:
17.22

If there are any special defined menu functions, verify that they function correctly and are available at the appropriate time.

Test 18.
Modal Windows

Functional:
18.1

Modal windows have buttons for the functions "Cancel" and "OK". They may also have other buttons, or a more specific button than OK. Semi-modal windows (those limiting you to not change other windows in the form but still allowing access to the pulldown menus) have a "Done" button rather than an "OK" button. In some cases, Semi-modal windows may substitute a more specific button label than “Done”.

Functional:
18.2

Verify disabled keyboard commands for Exit and Clear Form in modal situations.

Functional:
18.3

You cannot open a non-modal window from a modal window.

Cosmetic:
18.4

Modal windows do not allow close, resize, maximization, or minimization.

Cosmetic:
18.5

Modal windows open centered on the screen or in an appropriate position relative to the calling window.

Test 19.
Non-Modal Windows

Cosmetic:
19.1

Non-modal windows can close using the native GUI close mechanism.

Cosmetic:
19.2

Non-modal windows can close using Action Close Form.

Cosmetic:
19.3

Closing a non-modal window does not force a commit of its data.

Functional:
19.4

When you close the master window, all of its details and find windows close.

Cosmetic:
19.5

Non-modal windows allow resize and minimization. You can maximize if, and only if, stretching displays more data horizontally.

Test 20.
Concurrent Requests

If the form does not submit a concurrent request, skip to the next test.

Functional:
20.1

If the request submits a report, you can print the report using the menu.

Functional:
20.2

If the request submits a report, the report is accurate.

Functional:
20.3

If the request submits a report, you can use every sort option provided by the reporting form when you print it.

Functional:
20.4

Selection criteria work correctly.

Functional:
20.5

You cannot specify nonsensical selection criteria or print reports under conditions prohibited by the application design.

Functional:
20.6

The concurrent request log file shows correct output.

Functional:
20.7

The concurrent request log file shows the correct arguments passed from the requesting form.

Functional:
20.8

Each concurrent request the form makes submits successfully (or reports a valid reason for failure in the log).

Functional:
20.9

Each concurrent process that modifies the database makes the appropriate changes.

Test 21.
Response Time

Test response time against a database as large as that found in a typical user site on a machine of typical speed for your users.

Cosmetic:
21.1

When you query the form, it retrieves a record in five seconds or less (or if that is not possible, displays the “watch” cursor or a progress bar).

Cosmetic:
21.2

Field-to-field navigation requires less than one second (or if that is not possible, displays the “watch” cursor or a progress bar).

Cosmetic:
21.3

Record-to-record navigation requires less than one second (or if that is not possible, displays the “watch” cursor or a progress bar).

Cosmetic:
21.4

A LOV window appears in five seconds or less (or if that is not possible, displays the “watch” cursor or a progress bar).

Cosmetic:
21.5

You can save your changes in five seconds or less (or if that is not possible, displays the “watch” cursor or a progress bar).

Test 22.
General User Interface

Functional:
22.1

The form uses a confirmation window to verify destructive or irreversible actions. The message in this window is terse and to the point. For example, use "Delete this supplier?", not "Do you really want to delete this supplier?"

Functional:
22.2

Closing the last master window (top level window) of a form exits the form.

Functional:
22.3

Check the form against the "Frequently Seen User Interface Problems" document, which is in the same directory as this document.

Cosmetic:
22.4

Run the form on a color monitor and make sure the colors are correct (if not, perhaps the wrong V.A.s are being used or the wrong color palette loaded.

Cosmetic:
22.5

Run the form using a different NLS to check alignment, dates, and numeric formatting.

Test 23.
Miscellaneous Coding Standards

Functional:
23.1

Verify recorded header and version control information are correct.

Designer:
23.2

No text strings hard coded into the form, including error messages.

Functional:
23.3

Form messages refer to application functions rather than terminal-specific keys. (One exception: currently Forms puts up the message "Press F8 to execute, Ctrl q to cancel" which we can do nothing about; they have agreed to change this message eventually.)

Functional:
23.4

Each button initiates the correct action or brings up the correct window.

Functional:
23.5

Verify any special design considerations from the detail design specification, such as business rules not already tested.

Test 24.
Record Locking

Start up multiple instances of the same form and manipulate the same data.

Functional:
24.1

If user A updates the row, then user B queries the same row and tries to update it before user A saves the row, user B gets "unable to reserve record for update or delete" error.

Functional:
24.2

If user A queries the record and user B queries the same record, and then user A updates and saves, when user B tries to update the record, they get "Record changed by another user". Re-query to see change, update, or delete error.

Functional:
24.3

Another session can update the same data after the record is saved in the session that performed the update, and requeried in the other session.

Functional:
24.4

Another session can update the same data after the update rolls back (Edit Clear Form) in the session that performed the update, without querying again in the other session.

SQL*Plus:
24.5

No locks remain on a record after exiting a forms session. (Verify by trying to update in SQL*Plus.)

Cosmetic Standards Tests

Test 25.
Property Classes

Designer:
25.1

Each module has property class MODULE and is still inheriting the menu FNDMENU.

Designer:
25.2

Each non-modal window has property class WINDOW and is still inheriting True for Inherit Menu.

Designer:
25.3

Each modal window has property class WINDOW_DIALOG and is still inheriting False for Inherit Menu.

Designer:
25.4

Each content canvas has property class CANVAS and is still inheriting the visual attribute CANVAS.

Designer:
25.5

Each stacked canvas for alternative region has property class CANVAS_STACKED and is still inheriting True for Raise on Entry.

Designer:
25.6

Each block for a non-modal window has property class BLOCK and is still inheriting Vertical for Record Orientation.

Designer:
25.7

Each block for a modal window has property class BLOCK_DIALOG and is still inheriting Same Record for Navigation Style.

Test 26.
Windows And Window Titles

Cosmetic:
26.1

The main window title (excluding the toolbar) reflects the form's most common use.

Cosmetic:
26.2

The window title is [OBJECTS], or [VERB] [OBJECTS] if the form does just one action or needs differentiation from another window whose title is only [OBJECTS].

Cosmetic:
26.3

[OBJECTS] is almost always plural. In combination blocks, the multi-row window is titled [OBJECTS] Summary.

Cosmetic:
26.4

The window title contains no redundant or unnecessary words like Maintain or Information.

Cosmetic:
26.5

The window title uses initial caps.

Functional:
26.6

The window title is logically consistent with the menu path required to reach the form.

Functional:
26.7

Each child window has necessary context included in the title after the dash. If limiting context to a chosen organization or set of books, the code displays in parentheses before the dash (the 3 character code, not the name).

Cosmetic:
26.8

The window uses the afapps icon, and there is no specified icon title so the icon uses the window title. (Minimize the window to test this.)

Designer:
26.9

The window size is within the maximum of 7.8"x5.0". Unless the window is so narrow that it is more than an inch shorter than the pulldown menu width in Motif, it is wide enough to fit the Motif pulldown menus.

Test 27.
Blocks And Regions

Cosmetic:
27.1

The first block of a window does not have a block header.

Cosmetic:
27.2

A block boundary is a line drawn above a detail block in the same window as its master if it is not obvious how the blocks relate.

Cosmetic:
27.3

A block boundary is a 2 point, solid, black line with an inset bevel. The line should look like it is a deep scratch in the window surface. Currently, it will appear whiter and thicker than the lines comprising boxes in Windows.

Functional:
27.4

Blocks that represent the same entity look the same or similar across the applications.

Functional:
27.5

Verify use of regions only to group closely related fields or to indicate an overflow region.

Cosmetic:
27.6

Verify correct placement of overflow regions below the multi-record block with a blank line between if space permits.

Cosmetic:
27.7

Each region has a boundary that is a 2 point, solid, black line with an inset bevel. The line should look like it is a deep scratch in the window surface.

Cosmetic:
27.8

In a single record block the boundary is a box; for multi-record blocks, the boundary is a line. If siblings are next to each other, the first line stops 0.1" before the second line. (Occasionally we use a line instead of a box in single record blocks to avoid boxes within boxes.)

Cosmetic:
27.9

Each alternative region has a poplist containing all possible regions for the block, starting with the first region and continuing in the same order as tabbing takes you.

Cosmetic:
27.10

On Motif, each block or region boundary has a title with characteristics: Helvetica, 10 point, bold.

Designer:
27.11

Each title has offset 1.5 character cells for regions, and 2 for blocks, to the right of the left edge of the boundary. Verify placement over the boundary.

Designer:
27.12

Each title snaps to the left and vertically centers.

Cosmetic:
27.13

Each boilerplate title appears surrounded by brackets with one space on either side to separate the text from the boundary. Poplists (on alternative regions) do not have these spaces.

Cosmetic:
27.14

Each title is the name of the object or group of items displayed in it.

Cosmetic:
27.15

Each block title is singular or plural depending on whether it is a 1:1 or 1:N relation with its parent.

Cosmetic:
27.16

Each title uses initial caps.

Designer:
27.17

Each title must be able to expand by 30% over character mode (Courier 12) length, with a minimum width of 1.0".

Cosmetic:
27.18

Each title and alternative region contains no redundant or unnecessary words like Information.

Test 28.
Layout

Designer:
28.1

Confirm that the grid is set up using 7.2 x 18 point character cells with 2 snap points per cell.

Cosmetic:
28.2

The form has a balanced layout.

Cosmetic:
28.3

The left edges of fields align into columns your eye can scan down when possible, even if it makes the window wider and even across region boundaries.

Designer:
28.4

Vertical scroll bars are 0.2" wide and on the left of the fields they control. Horizontal scroll bars are 0.25" wide and below the fields they control.

Test 29.
Text

General
Cosmetic:
29.1

Each prompt uses initial caps.

Designer:
29.2

All text must be able to expand by 30% over character mode (Courier 12) length, with a minimum width of 1.0". If necessary, folder prompts and approved abbreviations and terms are exceptions.

Designer:
29.3

If a field contains less than 12 characters, an extra 0.1" was added to the width.

Cosmetic:
29.4

If you are testing on Motif, all item prompts are Helvetica, 10 point, medium. On Windows, all item prompts are MS Sans Serif, 10 point, medium.

Cosmetic:
29.5

Each prompt contains no unnecessary abbreviations.

Cosmetic:
29.6

When the prompt contains abbreviations, verify use of approved abbreviations.

Cosmetic:
29.7

Each prompt contains no database jargon or contrived words.

Cosmetic:
29.8

The prompt text contains no special characters, such as colons, parentheses, question marks, etc. (A percentage symbol % is OK., as is the hyphen for range fields.)

Functional:
29.9

Throughout the applications, similar fields have similar prompts. Use the standard prompts from the terms list.

Single-Record Blocks

Designer:
29.10

Verify that prompts are in the correct position to the left of an item. There should be 1 character cell between the rightmost character of the prompt and the start of the item.

Designer:
29.11

Prompts are end-aligned and snapped to the right and vertically centered.

Cosmetic:
29.12

Prompts display on a single line where possible and never are multiple lines. However, in some cases, there are exceptions, such as; they are labeling a multi-line text item or when isolated from other labels.

Prompts may display above a field when they are part of a 2-dimensional matrix or if the field must extend the full width of the window.

Multi-Record Blocks

Cosmetic:
29.13

Verify position of prompts above the first record of each item.

Designer:
29.14

Verify offset of prompts; 0.5 character cell from the field edge. For left-justified prompts, they are 0.5 character cell to the right, for right-justified prompts, they are 0.5 character cell to the left.

Designer:
29.15

Check alignment on prompts for text items it should be similar to the data in their corresponding fields.

Designer:
29.16

Prompts snap horizontally to the start, center, or right as per the associated field's alignment. All prompts snap vertically to the bottom.

Designer:
29.17

Prompts for poplists are always start aligned.

Designer:
29.18

Prompts for check boxes should always center above the box (this centering is approximate, not exact).

Cosmetic:
29.19

When prompts contain more than one line of text, each line is of similar size as much as possible without splitting words. In addition the prompt displays as a single text item with a return character between lines.

Cosmetic:
29.20

Each line of a multi-line prompt justifies identically (if they are not, this is an indication that the justification setting is incorrect).

Cosmetic:
29.21

Verify use of connector bars only when space requires it. When used, the lines connect the left edge of the field with the leftmost prompt character. For fields without room to the right, the line connects the rightmost edge of the field to the rightmost character of the prompt and goes to the left instead. Whenever possible, connector bar prompts all go in the same direction, left or right, particularly for those near one another ("the wind is blowing the same way").

Cosmetic:
29.22

The connecting line is a 0 point, solid black line with no bevel.

Designer:
29.23

Each multi-record block that is not a combination block (single and multiple record views of the same data), and has no applicable details available for each record, has a current record indicator using property class CURRENT_RECORD_INDICATOR and it is still inheriting 0.1" width.

Designer:
29.24

Each multi-record block that is a combination block (single and multiple record views of the same data), or has applicable details available for each record, has a current record indicator using property class DRILLDOWN_RECORD_INDICATOR, and it is still inheriting a raised bevel and 0.2" width. Clicking or double-clicking it will go to the single record view or applicable details for that line. The raised bevel currently does not work in Windows.

Cosmetic:
29.25

Any horizontally scrolling region in a multi-record block is separated from its adjacent fields by at least 0.1".

 Cosmetic:
29.26

If all possible records always display, no vertical scroll bar displays, even though the record indicator is showing. When fixed labels display for the values shown on each row and are therefore just like other fields on the form to the user, verify the labels clearly appear like other labels, do not appear to be like data (black on gray, medium weight, right aligned).

Display Items

Designer:
29.27

Display fields have property class DISPLAY_ITEM and are still inheriting 0.23" height.

Designer:
29.28

Display fields are positioned 0.02" below the grid line (when they aren't, you will notice that the data does not seem to be in vertical alignment with entry columns next to it in a multi-record block or with its label in a single-record block). Their width is 0.01" shorter than usual in multi-record blocks (if they aren't, you will notice the columns run together on Windows). You do not need to do this if no columns in the block have bevels, although it is not an error if they move down anyway.

Designer:
29.29

Display items used as prompts have property class DYNAMIC_PROMPT and are still inheriting 0.2" height.

Designer:
29.30

Display items used as prompts are positioned 0.05" below the grid line (if they aren't, you will notice they do not align with boilerplate prompts).

Designer:
29.31

Display items used as titles have property class DYNAMIC_TITLE and are still inheriting bold text weight.

Designer:
29.32

Standard who date fields have a property class of CREATION_OR_LAST_UPDATE_DATE and are still inheriting False for Displayed.

Text Items

Designer:
29.33

Enterable text items have property class TEXT_ITEM and are still inheriting 0.25" height.

Designer:
29.34

Non-enterable text items that must be scrollable or queryable use property class TEXT_ITEM_DISPLAY_ONLY and are still inheriting 0.23" height.

Designer:
29.35

Multi-line text items have property class TEXT_ITEM_MULTILINE and are still inheriting Wrap Style word and True for Vertical Scroll Bar.

Cosmetic:
29.36

Display of the fields not excessively crowded, uses plenty of white space.

Designer:
29.37

The only items in the 1 character cell margin all around the window edge are region boxes, block banners, coordination check boxes, and buttons. The top and/or bottom margins may contain breaks if absolutely necessary.

Functional:
29.38

The primary key (or other identifying field) displays first in the block.

Functional:
29.39

Verify placement of frequently used fields. These fields should appear before rarely changed fields when doing so does not break the logical field order.

Functional:
29.40

Verify placement of mandatory fields they should appear before optional fields when doing so does not break the logical field order.

Cosmetic:
29.41

Verify that if any disable text items are present they have visual attribute DISABLED_TEXT (black-on-canvas).

Functional:
29.42

All enterable text items have a prompt.

Designer:
29.43

Date fields are 1.2" wide.

Designer:
29.44

Time fields are 0.8" wide.

Designer:
29.45

Date-time fields are 1.7" wide.

Designer:
29.46

Percentage fields are 0.7" wide.

Designer:
29.47

Other fields have the correct length as specified in the standard terms list.

Test 30.
Other Interface Items

Check Boxes

Cosmetic:
30.1

Verify that check boxes are in use only when exactly one value is applicable in an obvious Yes/No situation. (e.g. Open/Closed, Allowed/Disallowed)

Cosmetic:
30.2

Check boxes have a reasonable default value (on or off, as will most likely be the case).

Cosmetic:
30.3

Check box labels have room to expand by 30% over character mode (Courier 12) length, with a minimum width of 1.0".

Designer:
30.4

Check boxes label property is in use for single record blocks only. In a single record block the label is in use instead of a prompt and you can click on the label to change the checkbox value.

Designer:
30.5

In a multi-record block, a checkbox is 0.3" wide.

Designer:
30.6

Check boxes have property class CHECKBOX and are still inheriting visual attribute RADIO_CHECK.

Option Groups (AKA Radio Fields)

Functional:
30.7

Verify use of option groups only where 1 of 2 to 4 values is applicable and the list will be static throughout the life of the product.

Designer:
30.8

Option group text must be able to expand by 30% over character mode (Courier 12) with a minimum width of 1.0"..

Designer:
30.9

Option buttons have property class RADIO_BUTTON and are still inheriting visual attribute RADIO_CHECK.

Cosmetic:
30.10

All buttons in disabled option groups should show a dim display.

Functional:
30.11

Verify that this data value is always an option group. It is not sometimes an option group and sometimes a poplist, for example.

Cosmetic:
30.12

Option groups always have a default value.

Cosmetic:
30.13

Option groups have a region boundary if the content is not obvious. The title is the name of the item and the individual buttons are elements within the region.

Poplists

Functional:
30.14

Verify use of poplists in all places where exactly one value is applicable and the list will not grow beyond 15 (user defined or not). Never allow use of poplists in places where the list could grow beyond 15 or might ever grow beyond 25.

Cosmetic:
30.15

Poplist items always have a default value. They may include a blank value and blank may be the default if blank is a valid value, however.

Cosmetic:
30.16

Poplist values must be able to expand by 30% over character mode (Courier 12) length plus .5", for a minimum width of 1.5". The one exception to this is Yes, No, Blank poplists in Find windows, which only need to be 1" wide. This means that the maximum English value is 23-24 characters. Currently these do not render at the actual size in Motif.

Cosmetic:
30.17

Each poplist has a prompt.

Cosmetic:
30.18

Poplist values have the initial letter Capitalized.

Designer:
30.19

Data poplists have property class LIST and are still inheriting visual attribute DATA.

Designer:
30.20

Control poplists have property class LIST_REGION_CONTROL and are still inheriting visual attribute CONTROL.

T-lists (Rarely used)

Functional:
30.21

Verify use of T-lists only where exactly one value is applicable and the list will not grow beyond 30.

Cosmetic:
30.22

T-lists show at least five records of data.

Designer:
30.23

T-lists have property class LIST and are still inheriting visual attribute DATA.

Buttons

Functional:
30.24

Each button has an access key that is unique within the form. No button uses menu reserved access keys of A, E, F, G, H, Q, S, or W.

Designer:
30.25

Button width must be large enough to support 30% expansion, with a minimum width of 1.2".

Cosmetic:
30.26

Buttons within a window are of similar size when it is reasonable to do so and spaced consistently except when grouping buttons.

Functional:
30.27

In general, buttons are navigable. Exceptions are buttons enabled only while in a particular field, clear buttons, and buttons following a multi-record block.

Designer:
30.28

Text buttons have property class BUTTON and are still inheriting False for Iconic and the platform's value for height.

Designer:
30.29

Iconic buttons have property class BUTTON_ICONIC and are still inheriting True for Iconic.

Cosmetic:
30.30

Disabled buttons display dimmed.

Cosmetic:
30.31

The default button is in the lower right corner, e.g. "OK". Every window with one or more buttons has a default button.

LOVs (List of Values)

Functional:
30.32

The LOV title is the name of the object and is plural.

Cosmetic:
30.33

The prompt of the first column is identical to or closely related to the prompt of the item that invoked it.

Designer:
30.34

LOVs have property class LOV and are still inheriting True for Auto Skip.

Find Windows

Cosmetic:
30.35

Window title begins with "Find".

Cosmetic:
30.36

Find windows have (from left to right) "Clear", "New" (optional), and "Find" buttons.

Functional:
30.37

Check boxes, option groups, and poplists display in Find Windows with poplists that include blank as their last value. Blank is almost always the default.

Functional:
30.38

Query Find brings up either a find window or a row LOV in each queryable block.

Functional:
30.39

Find Windows open centered on the calling window, or if they are the same size as the calling window or larger, they open cascaded from the calling window.

Functional:
30.40

Criteria entered in the Find Window appears in the query string when you do View Query

Test 31.
Range Fields

Functional:
31.1

Range validation occurs at the record level and either specifies clearly which fields are in error or moves the cursor to the first of the two fields (or both).

Cosmetic:
31.2

In a single record block, the format is [prompt] [field1] - [field2] if space permits. Otherwise a region or separate labels are in use if space allows.

Cosmetic:
31.3

In a multi-record block, the entity name is the region title above the From and To fields.

Cosmetic:
31.4

The prompt is plural.

Cosmetic:
31.5

The second field defaults from the first field when the user lands in the second field in Find windows (and only in Find windows).

Test 32.
Multiple Selection

Functional:
32.1

Each multi-record block that allows multiple selection has a checkbox immediately to the left of the scroll bar, 3 characters wide.

Cosmetic:
32.2

The checkbox does not have a prompt.

Cosmetic:
32.3

The selection checkbox is navigable and is the first sequenced item in the record.

Cosmetic:
32.4

You can select a single record using the checkbox, continuous records using shift-click, and discontinuous records using control-click. This is not currently available.

Cosmetic:
32.5

Edit Select All and Edit Deselect All affect all records in the block. This is not currently available.

Non-NCD:
32.6

Selected records display with a Cyan background.

Unit Test Specification - <Scenario Number>

Note: A Test Specification defines test script execution. You can have several specification line items per process task. Follow these guidelines:
1) Scenario Step: unique sequence number for each task as listed on the Business Requirements Scenario (RD.050) for this scenario
2) Test Step: the series of procedural steps that must be taken for the scenario step in order to properly perform the test
3) Role: Step/Sequence owner
4) Action or Path: descriptive of action to be taken by the primary resource or role during the test; either navigation, location or directive information
5) Expected Results: anticipated outcomes or outputs described in measurable terms
6) Actual Results: actual outcomes or outputs described in measurable terms
7) Expected Cycle Time: anticipated elapsed time for processing the Step/Sequence
8) Actual Cycle Time: actual elapsed time consumed during processing the Step/Sequence
9) Status: Active, Pending Active, Pending Obsolete, or Obsolete

Note: The tables in this deliverable contain sample data that should be used as an example only. Remove all sample data before completing your final deliverable.

Scenario
Step
Test
Step

Role
Action
or Path

Expected Results

Actual Results
Expected
Cycle Time
Actual
Cycle Time

Status

1
OFA109.1
OE Supervisor
Customers -> Standard
Customer Header entered
Customer Header entered
> 1 min.
> 1 min.
Active

Data Profile - <Scenario Number>

Note: A Data Profile describes the business conditions that are needed in order to test the application system. You can have several Data Profiles per process task. Follow these guidelines:
1) Scenario Step: unique sequence number for each task as listed on the Business Requirements Scenario (RD.050) for this scenario
2) Business Object: the name of a particular data element that must be present (like “Customer” or “Master Demand Schedule”)
3) Data Condition: actual values or reference to some other document containing values—or even a screen shot
4) Business Rule: the policy or decision drivers that influence the process step
5) Type: the entity type.
6) Status: the entity state.

Scenario
Step
Business
Object
Data
Condition
Business
Rule

Type

Status

1
Customer
Customer = Business World
Enter New Customer
Manual
Active

Defect Log

Defect ID Number
Test Step Reference
Module Name
Defect Description
Resolution
Re-Test By
Re-Test Date
Status (open, closed, in process)

1
OFA 109.1
Order Entry
New customer header record did not commit.
Re-linked module XYZ and entered customer header without exception.
G.C. Snrub
01/01/00
Closed

Open And Closed Issues For This Deliverable

Note: Add open issues that you identify while writing or reviewing this document to the open issues section. As you resolve issues, move them to the closed issues section and keep the issue ID the same. Include an explanation of the resolution.

When this deliverable is complete, any open issues should be transferred to the project- or process-level Risk and Issue Log (PJM.CR.050) and managed using a project level Risk and Issue Form (PJM.CR.050). In addition, the open items should remain in the open issues section of this deliverable, but flagged in the resolution column as being transferred.

Open Issues

ID
Issue
Resolution
Responsibility
Target Date
Impact Date

Closed Issues

ID
Issue
Resolution
Responsibility
Target Date
Impact Date

Document Control 1 If > 1 “23 of 28 = - Sec1
27
” “v”
v

<Subject>
File Ref: TE020_Unit_Test_Script.doc (v. DRAFT 1A)

Company Confidential - For internal use only

_989043700.doc
�

�

